はじめに
[1.1] 正弦波の表現 1.1.1 直角座標による表示 1.1.2 極座標による表示 1.1.3 指数関数による表示 1.1.4 複素数の四則演算 [1.2] ラプラス変換 1.2.1 ラプラス変換の定義 1.2.2 線形微分方程式とラプラス変換 1.2.3 代表的なラプラス変換 1.2.4 ラプラス変換の導出 [1.3] ラプラス逆変換 1.3.1 ラプラス変換の使用方法
[2.1] Scilabのインストールと概要 2.1.1 指数関数による表示 2.1.2 簡単な実行例 2.1.3 メニューの解説 [2.2] 四則演算 2.2.1 四則演算の実行 2.2.2 数値の指数表現 2.2.3 数値表示のフォーマット指定 2.2.4 く使う関数と定数 [2.3] 配列 2.3.1 配列を使う 2.3.2 コロン演算子と連結 2.3.3 配列の演算 2.3.4 linespace、logspace [2.4] グラフ表示 2.4.1 「sinグラフ」の表示 2.4.2 グラフ表示関数の解説 2.4.3 線種指定のグラフ 2.4.4 その他のグラフ表示関連関数 [2.5] Scilabプログラム入門 2.5.1 テキストエディタ「SciNotes」 2.5.2 プログラムの保存 2.5.3 プログラムの実行 2.5.4 input関数 2.5.5 halt/pause 2.5.6 if(判定)文 2.5.7 for(繰り返し)文 2.5.8 while(繰り返し)文
[3.1] 「伝達関数」の概要 3.1.1 運動方程式を使った例 3.1.2 入力関数 3.1.3 解析 3.1.4 グラフ表示 [3.2] poly、syslin、csim 3.2.1 「伝達関数」からのグラフ表示 3.2.2 poly関数 3.2.3 syslin関数、csim関数 [3.3] ステップ応答法 3.3.1 比例要素 3.3.2 微分要素 3.3.3 積分要素 3.3.4 1次遅れ要素 [3.4] RLC回路 3.4.1 RLC回路 3.4.2 伝達関数の導出
[4.1] ゲインと位相 4.1.1 出力信号を求める [4.2] ボード線図 4.2.1 ゲインと位相の算出 4.2.2 ボード線図の描画 [4.3] 比例・微分・積分 4.3.1 比例要素 4.3.2 微分要素 4.3.3 積分要素 [4.4] 1次遅れ、無駄時間 4.4.1 1次遅れ要素 4.4.2 無駄時間要素 4.4.3 パデ近似 4.4.4 パデ近似の導出 [4.5] pade関数の作成 4.5.1 pade関数の仕様 4.5.2 pade関数のプログラム
[5.1] ブロック線図 5.1.1 ブロック線図の基本 5.1.2 直列接続 5.1.3 並列接続 5.1.4 フィードバック接続 5.1.5 ブロック図の簡単化 [5.2] フィードバック 5.2.1 安定性評価[解法(1)] 5.2.2 安定性評価[解法(2)] 5.2.3 Scilabでの確認 [5.3] 2次遅れ要素 5.3.1 「1次遅れ要素」の「直列接続」 5.3.2 振動系 5.3.3 「振動系」の「特性根」 5.3.4 「振動系」の「ステップ応答」 5.3.5 「振動系」の「周波数応答」 [5.4] 「振動系」の「ボード線図」 [5.5] ナイキスト線図 5.5.1 一巡伝達関数 5.5.2 「伝達関数」の「極座標表現」 5.5.3 nyquist関数 [5.6] 安定性の判別 5.6.1 判別方法(1) 5.6.2 判別方法(2) [5.7] 安定性判別の理屈 5.7.1 特性根 5.7.2 「1+G(s)+H(s)」の回転角 5.7.3 ナイキスト経路 5.7.4 結論 [5.8] 安定余裕の評価 5.8.1 「ナイキスト線図」から「安定余裕」の評価 5.8.2 「ボード線図」から「安定余裕」の評価 5.8.3 「無駄時間要素」を含んだときの「安定性」の評価 [5.9] 評価の例題 5.9.1 「無駄時間要素」を含んだときの「安定性」の評価 5.9.2 「ボード線図」からの「安定性」の評価 5.9.3 Scilabの関数を使う
[6.1] Xcos入門 6.1.1 「ブロック線図」の基本 6.1.2 「ブロック線図」の作図 6.1.3 シミュレーション 6.1.4 シミュレーションの実行 [6.2] [例]運動方程式 6.2.1 「数学モデル」の作成 6.2.2 「ブロック線図」の作成
[7.1] PID制御概要 7.1.1 「ON/OFF制御」の場合 7.1.2 「PID制御」入門 7.1.3 「PID制御」基本式のラプラス変換 [7.2] 比例(P)制御 7.2.1 「P制御」の特徴 7.2.2 「P制御」のシミュレーション 7.2.3 「P制御」をXcosでシミュレーション [7.3] 積分(I)制御 7.3.1 「I制御」の特徴 7.3.2 PI(比例+積分)動作 7.3.3 「PI制御」の例 7.3.4 「PI制御」をScicosでシミュレーション [7.4] 微分(D)制御 7.4.1 「D制御」の特徴 7.4.2 PID(比例+積分+微分)制御 7.4.3 「PID制御」の例 7.4.4 「PI制御」をScicosでシミュレーション 7.4.5 「外乱」による影響 [7.5] PIDボード線図 7.5.1 「PI制御」のボード線図 7.5.2 「PID制御」のボード線図 7.5.3 「PI・PID制御」の「ステップ応答」
[8.1] DCモーターの特性 8.1.1 「DCモーター」の動作原理 8.1.2 逆起電力 8.1.3 「DCモーター」の電気モデル 8.1.4 「DCモーター」の機械モデル 8.1.5 機械モデルの伝達関数 8.1.6 ブロック線図 8.1.7 「ブロック線図」の簡略化 [8.2] 実例 8.2.1 制御対象の「仮想DCモーター」の特性 8.2.2 DCモーターのステップ応答 8.2.3 PID制御シミュレーション
索引
※ 内容が一部異なる場合があります。発売日は、東京の発売日であり、地域によっては1〜2日程度遅れることがあります。あらかじめご了承ください。
|